Main menu

Элеваторные узлы применяются в тепловых пунктах многоквартирных домов с середины прошлого века, отдельные экземпляры продолжают успешно работать до сих пор. Жильцы не торопятся менять морально устаревшие элементы на новую арматуру, оборудованную современной автоматикой, причем это нежелание вполне обосновано. Для прояснения сути вопроса предлагаем разобраться, что такое элеватор, его устройство и основные функции в системе отопления.

Назначение и функции узла

Вода в сетях централизованного теплоснабжения достигает температуры 150 °С и движется по наружным магистралям под давлением 6—10 Бар. Зачем поддерживаются столь высокие параметры теплоносителя:

  1. Чтобы высокотемпературные котлы либо другое теплосиловое оборудование функционировало с максимальным КПД.
  2. Для доставки нагретой воды в районы, отдаленные от котельной или ТЭЦ, сетевые насосы должны создавать приличный напор. Тогда на тепловых вводах близлежащих зданий давление достигает 10 Бар (опрессовка – 12 Бар).
  3. Транспортировка перегретого теплоносителя выгодна экономически. Тонна воды, доведенная до 150 градусов, содержит значительно больше тепловой энергии, нежели аналогичный объем при 90 °С.

Справка. Теплоноситель в трубах не обращается в пар, поскольку находится под давлением, удерживающим воду в жидком агрегатном состоянии.

Где ставится элеваторный узел
Деталь незамысловатая — с виду обычный тройник с фланцами

Согласно действующим нормативным документам, температура теплоносителя, подаваемого в систему водяного отопления жилого либо административного здания, не должна превышать 95 °С. Да и напор 8—10 атмосфер слишком велик для внутридомовой теплосети. Значит, указанные параметры воды нужно подкорректировать в меньшую сторону.

Элеватор — это энергонезависимое устройство, понижающее давление и температуру входящего теплоносителя путем подмешивания охлажденной воды, поступающей из системы отопления. Показанный выше на фото элемент входит в состав схемы теплового узла, устанавливается между подающим и обратным трубопроводом.

Третья функция элеватора – обеспечить циркуляцию воды в домовом контуре (как правило, однотрубной системы). Вот почему данный элемент представляет интерес – при внешней простоте он совмещает 3 устройства – регулятор давления, смесительный узел и водоструйный циркуляционный насос.

Стальной тройник с фланцами
Элеваторный элемент со сменным соплом

Принцип работы элеватора

Внешне конструкция напоминает большой тройник из металлических труб с присоединительными фланцами на концах. Как устроен элеватор внутри:

  • левый патрубок (смотри чертеж) представляет собой сужающееся сопло расчетного диаметра;
  • за соплом располагается смесительная камера цилиндрической формы;
  • нижний патрубок служит для присоединения обратной магистрали к смешивающей камере;
  • правый патрубок – это расширяющийся диффузор, направляющий теплоноситель в отопительную сеть многоэтажного дома.
Чертеж эжекционного устройства для отопления
На чертеже патрубок эжектируемого потока условно показан сверху, хотя обычно он располагается снизу

Примечание. В классическом исполнении элеватор не требует подключения к домовой электросети. Обновленный вариант изделия с регулируемым соплом и электроприводом присоединяется к внешнему источнику питания.

Стальной элеваторный узел подключается левым патрубком к подающей магистрали централизованной тепловой сети, нижним – к обратному трубопроводу. С обеих сторон элемента ставятся отсекающие задвижки, плюс сетчатый фильтр – отстойник (иначе – грязевик) на подаче. Традиционная схема теплового пункта с элеватором также включает манометры, термометры (на обеих линиях) и прибор учета потребленной энергии.

Схема теплового пункта административного здания

Теперь рассмотрим, как работает элеваторная перемычка:

  1. Перегретая вода из сети теплоснабжения проходит через левый патрубок к соплу.
  2. В момент прохождения сквозь узкое сечение сопла под высоким давлением течение потока ускоряется согласно закону Бернулли. Начинает действовать эффект водоструйного насоса, обеспечивающего циркуляцию теплоносителя в системе.
  3. В зоне смесительной камеры напор воды снижается до нормы.
  4. Струя, движущаяся с высокой скоростью в диффузор, создает разрежение в камере смешивания. Возникает эффект эжекции – поток жидкости с более высоким давлением увлекает через перемычку теплоноситель, возвращающийся из отопительной сети.
  5. В камере элеватора отопления происходит перемешивание охлажденной воды с перегретой, на выходе из диффузора получаем теплоноситель нужной температуры (до 95 °С).

Уточнение. Стоит отметить, что элеваторный узел также использует в работе принцип инжекции – смешивание двух струй с одновременной передачей энергии. Напор результирующего потока становится меньше, чем первоначального, но больше подсасываемого из обратки. Более понятно процесс показан на видео:

Главное условие нормальной работы элеватора – достаточный перепад давлений между магистральной подачей и обратной линией. Указанной разницы должно хватить на преодоление гидравлического сопротивления домового отопления и самого инжектора. Обратите внимание: вертикальная перемычка врезается в обратку под углом 45° для лучшего разделения потоков.

Функциональная схема работы элеватора
На подаче из теплосети давление самое высокое, при выходе из диффузора – среднее, в обратной магистрали — наиболее низкое. То же самое в элеваторе происходит с температурой воды

Технические характеристики стандартных изделий

Линейка элеваторов заводского изготовления состоит из 7 типоразмеров, каждому присвоен номер. При подборе учитывается 2 основных параметра – диаметр горловины (камеры смешения) и рабочего сопла. Последнее представляет собой съемный конус, который при необходимости меняется.

Чертеж элеваторного смесителя с размерами
Размеры составных элементов изделия смотрите ниже в таблице

Замена сопла производится в двух случаях:

  1. Когда проходное сечение детали увеличивается в результате естественного износа. Причина выработки – трение абразивных частиц, содержащихся в теплоносителе.
  2. Если необходимо изменить коэффициент смешивания – повысить либо снизить температуру воды, подающейся в домовую систему теплоснабжения.

Номера стандартных элеваторов и основные размеры приведены в таблице (сопоставляйте с обозначениями на чертеже).

Технические параметры заводских инжекторных смесителей

Обратите внимание: в технических характеристиках не указывается проходное сечение сопла, поскольку этот диаметр рассчитывается отдельно. Чтобы подобрать номер готового элеваторного тройника под конкретную отопительную систему, необходимо также вычислить потребный размер смесительно-инжекционной камеры.

Расчет и подбор элеватора по номеру

Сразу уточним порядок действий: первым делом рассчитывается диаметр смешивающей камеры и выбирается подходящий номер элеватора, затем определяется размер рабочего сопла. Диаметр инжекционной камеры (в сантиметрах) вычисляется по формуле:

Формула расчета смесительной горловины

Участвующий в формуле показатель Gпр – это реальный расход теплоносителя в системе многоквартирного дома с учетом ее гидравлического сопротивления. Величина рассчитывается так:

Формула определения расхода теплоносителя для обогрева здания

  • Q – количество теплоты, расходуемое на обогрев здания, ккал/ч;
  • Тсм – температура смеси на выходе из элеваторного тройника;
  • Т2о – температура воды в обратной линии;
  • h – сопротивление всей разводки отопления вместе с радиаторами, выраженное в метрах водного столба.

Справка. Чтобы вставить в формулу непонятные килокалории, нужно знакомые ватты умножить на коэффициент 0.86. Метры водного столба преобразуются в более распространенные единицы: 10.2 м вод. ст. = 1 Бар.

Пример подбора номера элеватора. Мы выяснили, что реальный расход Gпр составит 10 тонн смешанной воды за 1 час. Тогда диаметр смесительной камеры равен 0.874 √10 = 2.76 см. Логично взять смеситель №4 с камерой 30 мм.

Теперь выясняем диаметр узкой части сопла (в миллиметрах) по следующей формуле:

Формула расчета размера форсунки

  • Dr – определенный ранее размер инжекторной камеры, см;
  • u – коэффициент смешивания;
  • Gпр – наш расход готового теплоносителя на подаче в систему.

Хотя внешне формула кажется громоздкой, но в действительности расчеты не слишком сложные. Остается неизвестным один параметр – коэффициент инжекции, вычисляемый так:

Формула вычисления коэффициента смешивания

Все обозначения из данной формулы мы расшифровали, кроме параметра Т1 – температуры горячей воды на входе в элеватор. Если предположить, что ее величина составляет 150 градусов, а температура подачи и обратки 90 и 70 °С соответственно, искомый размер Dc выйдет 8.5 мм (при расходе 10 т/ч воды).

Когда известна величина напора Нр на входе в элеватор со стороны централи, можно воспользоваться альтернативной формулой определения диаметра:

Формула определения диаметра форсунки по располагаемому напору

Замечание. Результат вычисления по последней формуле выражается в сантиметрах.

В заключение о недостатках элеваторных смесителей

Положительные моменты использования элеваторов в домовых теплопунктах мы выяснили ранее – энергонезависимость, простота, надежность в работе и долговечность. Теперь о недостатках:

  1. Для нормального функционирования системы нужно обеспечить значительный перепад напора воды между обраткой и подачей.
  2. Требуется индивидуальный подбор узла к конкретной отопительной сети, основанный на расчете.
  3. Чтобы изменить параметры выходящего теплоносителя, нужно пересчитать диаметр отверстия форсунки под новые условия и заменить сопло.
  4. Плавная регулировка температуры на элеваторе не предусмотрена.
  5. Узел не может применяться в качестве циркуляционного насоса локальной схемы (например, в частном доме).

Регулируемая модель элеваторного узла

Уточнение. Существуют усовершенствованные модели элеваторов с регулируемым проходным сечением. Внутри предкамеры установлен конус, перемещаемый шестеренчатой передачей, привод – ручной либо электрический. Правда, теряется главное преимущество узла – независимость от электроэнергии.

Домовые однотрубные системы, действующие совместно с элеваторами, довольно сложно запускать в работу. Нужно сначала выдавить воздух из обратного стояка, затем из подающего, постепенно открывая магистральную задвижку. Подробнее об инжекционных узлах и способе запуска расскажет мастер – сантехник в видеосюжете:

Назначение элеваторного узла

В небольших индивидуальных системах отопления загородных домов часто применяют узел подмеса – схему обвязки котла, позволяющую добавлять в горячий теплоноситель некоторую часть уже остывшего, следующего по обратной магистрали. Так же приходится поступать и при организации теплоснабжения городских многоэтажек, отапливаемых централизованно. Именно для этого и предназначен элеватор отопления.

Паровая котельнаяПрежде чем говорить о ситуациях, в которых задействуют данное устройство, следует рассмотреть схемы работы котельных или, как говорят специалисты, их температурные графики.

Они характеризуются температурой теплоносителя в линиях:

  • подающей;
  • обратной.

Таких графика три:

  1. 150 (подача) и 70 («обратка») градусов.
  2. 130 и 70 градусов.
  3. 95 или 90 и 70 градусов.

Выбор температурного режима работы котельной обуславливается экономическими показателями, связанными с производством и передачей тепла, и зависит от географической широты и соответствующего ей климата.

По первому графику работают теплоцентрали в Мурманске, по второму – к примеру, в Москве, по третьему – на юге страны: в Краснодаре или в Сочи.

Теплоноситель с температурой 90 – 95 градусов можно подавать к потребителям напрямую. Без каких-либо промежуточных операций он поступает в коллектор, а затем – в стояки и радиаторы квартир. Если же теплоноситель заходит в дом с более высокой температурой, то его, согласно нормам, приходится охлаждать.

Также температуру теплоносителя необходимо регулировать при изменении температуры наружного воздуха, иначе в период потепления в квартирах будет слишком жарко. Тут-то и приходит на помощь элеваторный узел.

Конструкция и принцип действия

Сопло элеватораЭлеватор отопления состоит из следующих элементов:

  • камера смешивания (разрежения);
  • сопло (коническая насадка);
  • струйный элеватор.

По сути своей данное устройство является струйным насосом: в быстро движущемся потоке горячего теплоносителя падает давление (закон Бернулли), за счет чего и подсасывается рабочая среда из обратной магистрали.

Основные параметры – диаметры конуса и камеры смешения. Они подбираются таким образом, чтобы при нормальных плотности и расходе воды из сети главная характеристика элеваторного узла (коэффициент смешения) пребывала бы в заданных пределах.

При потеплении или похолодании на улице изменится и температура теплоносителя на входе (и его плотность). Следовательно, увеличится или уменьшится расход через конус и линию смешивания. Таким образом система реагирует на температурные колебания наружного воздуха.

Достоинства и недостатки

Практичность элеватора отопления обусловлена следующими преимуществами:

  • простота устройства и, как следствие, минимальное обслуживание;
  • долговечность;
  • низкая стоимость;
  • энергонезависимость (функционирует без участия электричества);
  • независимость коэффициента смешения от гидравлического режима во внешней сети;
  • наличие дополнительной функции: узел играет роль циркуляционного насоса.

Характерными «минусами» данной технологии являются:

  • отсутствие возможности регулирования температуры на выходе;
  • необходимость перепада давления между подающей и обратной линиями в пределах 0,8 – 2 атм;
  • сложность и высокая точность расчета диаметра насадки-конуса и размеров камеры смешения.

Схемы подключения элеватного узла системы отопления

Устройство элеваторного узлаПроцессы подогрева воды для систем горячего водоснабжения (ГВС) и отопления между собой некоторым образом взаимосвязаны.

Из-за того, что температура воды в ГВС при любых условиях должна поддерживаться в пределах 60 – 65 градусов, при плюсовых температурах наружного воздуха в элеватор может поступать более горячий теплоноситель, чем требуется.

При этом имеет место перерасход тепла на уровне 5% — 13%. Во избежание этого явления применяют три схемы подключения элеваторного узла:

  • с регулятором расхода воды;
  • с регулируемой насадкой;
  • с насосом регулирующим.

С регулятором расхода воды

Данное устройство позволяет соблюсти основное условие качественного управения подачей тепла: расход теплоносителя через отопительную систему должен сохраняться неизменным.

При выполнении данного условия удается избежать поэтажной разрегулировки, которая имеет место в однотрубных системах в случае уменьшения расхода теплоносителя.

Однако, схема «элеватор + регулятор расхода» не в состоянии поддержать температуру после данного устройства на приемлемом уровне при отклонениях от нормального температурного графика.

С регулируемым соплом

Площадь поперечного сечения выходного отверстия насадки регулируется вводимой в него иглой. При этом увеличивается коэффициент смешивания и, соответственно, падает температура теплоносителя после элеватора.

Недостатком данной схемы является то, что при введении иглы в отверстие конуса увеличивается гидросопротивление последнего, вследствие чего расход теплоносителя, а соответственно и количество поставляемого тепла, уменьшается.

С регулирующим насосом

Насос монтируется на линии смешения элеваторного узла либо параллельно ей. В дополнение к нему монтируются регуляторы расхода теплоносителя и его температуры. Данное решение является весьма эффективным, поскольку оно позволяет:

  • регулировать температуру теплоносителя при любой температуре наружного воздуха, а не только при плюсовой;
  • поддерживать циркуляцию теплоносителя во внутренней сети при остановке внешней.

К недостаткам схемы можно отнести высокую стоимость, сложность и увеличение эксплуатационных расходов за счет энергоснабжения насоса.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.